
Drupal 8 /  
Theming Quickstart

Introduction to themes in Drupal 8

» New theme layer based in Twig (used in other CMSs)
» 2 new core base themes: Stable & Classy

» Both contain all the templates Drupal puts out from core
» ‘Stable’ markup will not change between major releases
» ‘Classy’ contains BEM-style class structure and logic

» Base your new theme on one or the other depending on needs
» If no base theme declared, it’s Stable by default

Theme folder in Drupal hierarchy

» Location in file hierarchy:
▪ Drupal core folder/themes/

Custom theme file organization

Core theme file organization

Types of themes
Core themes Drupal core comes with a few themes. These are suitable for very

basic sites.

Contributed
Standard themes

Free themes that have been contributed back to the Drupal
Community. http://drupal.org/project/themes

Contributed Starter/Base
themes

Base or Starter themes are contributed themes designed to be used
as a starting point for a custom subtheme.

Custom themes Most sites require a custom look and feel. These are often created as
subthemes of a starter or base theme.

Contributed
Administration themes

Themes that are displayed only in administration sections of a site

 

I

http://drupal.org/project/themes

Finding & evaluating contributed themes

» Contributed Theme Considerations
▪ Two types of themes, visitor-facing, and admin-facing

▪ Themes may or may not resize for mobile devices.
▪ Base themes may not be complete enough for site

builders new to Drupal
» https://www.drupal.org/project/project_theme

https://www.drupal.org/project/project_theme

Project page

» Who maintains this?
» What are current issues?

» Similar projects?
» Documentation?
» Download links

Downloads and versions

Project information

The contents of a simple theme

Let’s make a custom theme

» You’ll need your text editor to create new files
» Project names are important

▪ They’re the “key” that connect all components of the project
▪ Must be unique
▪ Conventions

• all lower case beginning with a letter
• no spaces, dashes or punctuation
• can contain underscores and numbers if not leading with one

.info.yml file

» A .info.yml file is the only required file of a theme
» It makes declarations to Drupal, specifying:

▪ the theme name label
▪ type of project (module or theme)
▪ base theme

▪ core compatibility
▪ regions and feature overrides
▪ location of CSS and other needed files

» Optional values not specified will use Drupal’s default

Create your folder

Make the .info.yml file

» Make a Simple Theme

▪ Create a mytheme folder in the /themes/ directory
▪ Start a mytheme.info.yml file in your text editor, save to

your project folder

Contents of mytheme.info.yml

Exercise: Add a logo and screenshot

» Copy screen shot and logo  
from course asset folder

» Declare in mytheme.info.yml
» Visit Manage > Structure > Block layout and ensure the

Site Branding block is in the Header region
» Configure to turn off Site name and Site slogan

Updated contents of mytheme.info

Regions

» The areas you assign blocks to

» Drupal has default regions that it uses if you do not declare ANY
custom regions in .info.yml

» Declare ONE custom region, you need to declare all
» Three files help you customize regions:

▪ Declare in the .info.yml
▪ Render page.html.twig template
▪ Style with CSS

Default regions

» sidebar_first: Items for the first sidebar.
» sidebar_second: Items for the second sidebar.
» content: The main content of the current page.
» header: Items for the header region.

» primary_menu: Items for the primary menu region.

» secondary_menu: Items for the secondary menu region.

» footer: Items for the footer region.

» highlighted: Items for the highlighted content region.
» help: Dynamic help text, mostly for admin pages.
» breadcrumb: Items for the breadcrumb region.

Hidden regions

» Two hidden regions
▪ page_top

▪ page_bottom
» Not available to for blocks, but modules and Drupal system

messages might utilize them

Notes about regions

» Don’t forget: your theme has all default regions—  
until you define your first region!

» The regions you define are displayed in  
Manage > Structure > Block layout

» This Block layout list will match the labels you assign and
the order you used in your .info.yml

Exercise: Adding regions

» Open mytheme.info.yml.
» Add the code to the right.

» Save and clear the cache.
» Go to the Block Layout page.
» You’ll only see the three visible regions you declared.
» Click Demonstrate block regions.  

Notice it reflects your regions!

Exercise: Add .libraries.yml file

» Create a mytheme.libraries.yml text file

» Indent with 2 spaces at a time—do not use tabs

Exercise: Edit .info.yml

» Add this to mytheme.info.yml (spacing is important!):

Exercise: Clear the cache!

» After updating .info.yml files and .libraries.yml files, always
clear your cache
▪ Manage > Configuration > Development >

Performance > Clear all caches

Using remote assets

» Content Delivery Networks
» Remote CSS

» Webfonts

Using JavaScript assets

» You can also define JavaScript assets for your theme
» Make a container for them in .libraries.yml
» Syntax is similar to CSS. Example:

Declaring dependencies

» Drupal 8 provides assets like jQuery and normalize.css
▪ asset libraries available for your theme

▪ does not load scripts by default
▪ you selectively loads libraries

» Core asset location: /core/assets/vendor
» Syntax for loading core assets: - core/assetname
» Syntax for other installed assets: - project/asset

Exercise: Adding a web font

» Open mytheme.libraries.yml
» Add the following after the end of global-css:

Exercise: Updating .info.yml

» Open mytheme.info.yml
» Update the list of libraries to look like this:

Exercise: Adding styles.css

» Create styles.css in the /css/ folder
» Add the following CSS:

Exercise: Result

» Clear the cache
» Visit your page!

Advanced .info.yml options

» libraries-extend

» libraries-override

» stylesheet-remove

Adding breakpoints

» Used in responsive design
» Consist of a label and a media query

» Media queries encode the breakpoints, allow themer to
implement different ways of displaying content

» Breakpoints are defined in a .breakpoints.yml file
» Breakpoint name has syntax of themename.descriptor
» Example: bartik.mobile: or bartik.narrow:

Exercise: Adding breakpoints

Anatomy of a theme

» Drupal themes are made up of  
many files – most commonly:
▪ The .info.yml file

▪ The .libraries.yml file
▪ Image, CSS and JS files
▪ Twig Template Files (html.twig)
▪ A themename.theme file

screenshot.png and logo.svg

» screenshot.png
▪ allows Drupal admins to preview what your theme will

look like, when viewing your theme on the Appearance
page

» logo.svg
▪ the site logo that displays with your theme
▪ .svg format is required and allows scalability

The .theme file

» The .theme file is used to
store theme-specific PHP
functions, preprocess
functions, and hooks

» This was called template.php
in previous versions of
Drupal, but now has a syntax
of themename.theme

Coding standards for Drupal: PHP

» Use an indent of 2 spaces, with no tabs.
» Lines should have no trailing whitespace.

» Files should be formatted with Unix line endings (“\n”)
» Don’t use Windows line endings (“\r\n”)
» Lines should not be longer than 80 chars (generally)
» http://drupal.org/coding-standards

http://drupal.org/coding-standards

Coding standards for Drupal: Twig
» Use a space after an opening delimiter, and before a closing delimiter

▪ Examples:
• {{ foo }}

• {% if bar %}{% endif %}
» Put one space before and after operators

▪ Examples:
• {{ foo == 1 }}

• {{ true ? true : false }}
» Put one space after the use of : or , in arrays or hashes

» Do not put a space between open and closing parentheses in expressions
▪ Example:

• {{ 1 + (2 * 3) }}
» Do not put a space between string delimiters

▪ Example:
• {{ 'foo' }}

• {{ "foo" }}

Coding standards for Drupal: .yml

» The .yml files do not accept tab characters, and will throw
an error if they are present

» Indents should be two spaces long, per indentation

» When encountering errors, go back to an admin page and
then visit: Reports > Recent log messages for help
troubleshooting

Introduction to Twig template files

» Files end in .html.twig
» Supply the markup that renders

what is seen in browsers

» Contain mix of HTML 5 syntax
and Twig syntax

Drupal 8 template hierarchy

» Templates render from most specific to least specific
» field.html.twig >

▪ node.html.twig >
• region.html.twig >
– page.html.twig >
» html.html.twig

Modules and .html.twig template files

» It's discouraged to create markup in module PHP files
» Most module markup can be found in .html.twig templates

» https://www.drupal.org/node/2640110

https://www.drupal.org/node/2640110

Template overrides

» To override an existing template, do three things:

▪ Locate the existing template you wish to override
▪ Make a copy of it

• This is important, you don’t want to edit core templates!

▪ Place the copy in your theme’s /templates/ folder

» Can be general—overriding page.html.twig everywhere

» Can be specific—overriding page.html.twig on node 44

…but which template do you override?

Exercise: Turn on Twig debugging

Drupal 8 CSS best practices

» SMACSS categorization
▪ Base

▪ Layout
▪ Component
▪ State
▪ Theme

» Minimum Files
▪base.css

▪layout.css
▪components.css

» Drupal aggregates CSS
files, so multiples won’t
hinder speed on load.

How would you  
do that in Drupal?

Real-life design considerations

» Working in small groups or pairs, choose an inspiring
Drupal site from drupalshowcase.com

» Then, select a specific page or section to analyze

» Define the content types, blocks, regions, and work on a
wireframe drawing

» Also identify if there’s a base theme you might want to start
out with if you were to create a new theme!

Thank you

